Ein Gebäudeparkmodell der Stadt Thun in Raum und Zeit

Abschlussarbeit im Rahmen des CAS GIS in der Planung, Hochschule für Technik Rapperswil

Autor: Adrian Stämpfli adrian.staempfli@rega-sense.ch

Datum: 9. März 2015

Kontaktangaben des Autors: Adrian Stämpfli, adrian.staempfli@rega-sense.ch Mobile: 078 724 89 34

Verwendete Software und Versionen: Betriebssystem: Windows 7 ESRI ArcMap 10.2.2 ESRI ArcScene 10.2.2 R-Studio, Version 0.98.109 Google Earth Pro

Dateien auf der beigelegten CD: Diese Arbeit als PDF Film der Resultate aus dem ArcScene (.avi) in 3D Film der Resultate aus dem ArcMap (.avi) in 2D Kartenprodukte als PDF

INHALTSVERZEICHNIS

1.	lr	nhalt	liche Ausgangslage und Fragestellung	7
2.	N	/letho	odisches Vorgehen in Kürze	8
3.	E	ingre	enzung	8
4.	Z	iele d	der Arbeit	9
4	.1.	Me	hodische Ziele	9
4	.2.	Inho	altliche Ziele	0
5.	D	ater	ngrundlagen1	0
6.	E	ndpr	odukte1	2
7.	N	/letho	odisches Vorgehen: Berechnung des Wärmebedarfs1	2
8.	N	/letho	odisches Vorgehen: der Geoprozess1	4
8	.1.	Vor	bereiten der Datengrundlagen (GWR) und Import in ArcGIS	4
8	.2.	Zuso	ammenführen der Tabellen 1	5
8	.3.	Felc	lkalkulationen	5
8	.4.	Räu	ımliche Verknüpfung1	7
8	.5.	Auf	bereitung für die zeitliche Visualisierung1	9
0	.6.	Auf	bereitung und Darstellung der Resultate2	21
0				
0	8.6. gra	.1. Iphise	Energieverbrauch über den gesamten GP zwischen 2015 und 2035: che Darstellung	21
0	8.6. gra 8.6.	.1. Iphise .2.	Energieverbrauch über den gesamten GP zwischen 2015 und 2035: che Darstellung	21
0	8.6. gra 8.6. 8.6. mit	.1. iphise 2. .3. Arcs	Energieverbrauch über den gesamten GP zwischen 2015 und 2035: che Darstellung	21
9.	8.6. gra 8.6. 8.6. mit	.1. iphise .2. .3. Arcs result	Energieverbrauch über den gesamten GP zwischen 2015 und 2035: che Darstellung	21 25 27
9. 9	8.6. gra 8.6. 8.6. mit R	.1. iphise 2. .3. Arcs esult Ene	Energieverbrauch über den gesamten GP zwischen 2015 und 2035: che Darstellung	21
9. 9	8.6. gra 8.6. 8.6. mit R .1.	.1. iphise .2. .3. Arcs result Ene nisch	Energieverbrauch über den gesamten GP zwischen 2015 und 2035: che Darstellung	21
9. 9 9 9	8.6. gra 8.6. mit R .1. rapł 2.	1. phise 2. 3. Arcs esult Ene nisch	Energieverbrauch über den gesamten GP zwischen 2015 und 2035: che Darstellung	21 25 27 27
9. 9 9 9 9 (2	8.6. gra 8.6. mit R .1. rapł .2. .3.	.1. iphise .2. .3. Arcs Ene Lisch Ene ArcS	Energieverbrauch über den gesamten GP zwischen 2015 und 2035: che Darstellung	21 25 27 27 50
9. 9 9 9 9 (2 10.	8.6. gra 8.6. mit R .1. R .1. 2. .3. 2D), P	1. phise 2. 3. Arcs besult Ene Ene Arcs lausi	Energieverbrauch über den gesamten GP zwischen 2015 und 2035: che Darstellung	21 25 27 27 50 51 53
9. 9 9 9 (2 10. 11.	8.6. gra 8.6. mit R .1. rapł .2. .3. 2D), P	.1. 1. 1. 2. 3. Arcs Ene Lne Ene ArcS Veite	Energieverbrauch über den gesamten GP zwischen 2015 und 2035: che Darstellung	25 27 27 60 51 53 54
9. 9 9 (2 10. 11. 12.	8.6. gra 8.6. mit R .1. raph 2. .3. 2D), V S	1. phise 2. 3. Arcs result Ene Ene Arcs lausi Veite tolpe	Energieverbrauch über den gesamten GP zwischen 2015 und 2035: che Darstellung	21 25 27 30 31 33 43 64
9. 9 9 (2 10. 11. 12. 13.	8.6. gra 8.6. mit R .1. raph .2. .3. 2D), P V S P	1. phise 2. 3. Arcs esult Ene Ene Arcs lausi Veite tolpe	Energieverbrauch über den gesamten GP zwischen 2015 und 2035: che Darstellung	21 25 27 27 60 61 63 64 66 66

Anhang 2: Tabelle Resultate	39
Anhang 3: Karten in A3, Anhang 4: Das Prozessmodell in A3	39

ABBILDUNGSVERZEICHNIS

Abb. 1: Untersuchungsperimeter. Die Stadt Thun im Kanton Bern	9
Abb. 2: Energiekennzahlen nach Bauperiode1	1
Abb. 3: Schritt 1 im Geoprozess	5
Abb. 4: Die Sprungfunktion in Abhängigkeit von RENZYK und EFFGEWINN (Qh= Wärmebedarf)	6
Abb. 5: Ausschnitt aus dem Prozessmodell: ModellParameter	7
Abb. 6: Ausschnitt aus dem Prozessmodell: Feldberechnung	7
Abb. 7: Auszug aus dem Prozessmodell: Spatial Join	8
Abb. 8: Punkte neben Gebäudegrundrissen (Gebäude ab 2006)1	8
Abb. 9: Spatial Join. GWR-Daten auf Gebäudegrundrisse1	9
Abb. 10: Ausschnitt aus dem ModelBuilder2	20
Abb. 11: Das Tool Transpose in ArcGIS2	20
Abb. 12: Der "Time Slider" in ArcMap2	23
Abb. 13: Legenden der räumlichen Darstellung (Relativer Verbrauch und absoluter Verbrauch)2	23
Abb. 14: Ausschnitt aus der Karte (Relativer und absoluter Verbrauch im Jahr 2015, 2020, 2025 und 2035 in 2D)	24
Abb. 15: Ausschnitt aus dem ModelBuilder: Darstellung und Export der Resultate2	25
Abb. 16: Level of Detail OGC-Standards2	26
Abb. 17: Extrusion in ArcScene2	26
Abb. 18: Einsparungen je nach Parameterwahl (16 Beispiele)2	27
Abb. 19: Modellergebnisse RENZYK=302	28
Abb. 20: Modellergebnisse RENZYK=402	28
Abb. 21: Modellergebnisse RENZYK=602	29
Abb. 22: Modellergebnisse RENZYK=802	29
Abb. 23: Kartographische Darstellung des relativen Wärmebedarfs. Karte A3 siehe Anhana 3. Der Massstab stimmt bei dieser Abbildung nicht (!)	30

Abb. 24: Kartographische Darstellung des absoluten Wärmebedarfs. Karte A3 siehe Anhang 4. Der Massstab stimmt bei dieser Abbildung nicht (!)
Abb. 25: Kartographische Darstellung der Wärmebedarfs- abnahme. Karte A3 siehe Anhang 3. Der Massstab stimmt bei dieser Abbildung nicht (!)
Abb. 26: 3D- bzw. 4D-Stadtmodell von Thun in LOD2 (Ausschnitt)
Abb. 27: 3D- bzw. 4D-Stadtmodell von Thun in LOD2 (Ausschnitt)
Abb. 28: 3D bzw. 4D-Darstellung in Google Earth
Abb. 29: 3D- bzw. 4D-Darstellung in Google Earth (Punkte) im Jahr 2015
Abb. 30: 3D- bzw. 4D-Darstellung in Google Earth (Punkte) im Jahr 2035
Abb. 31: Parzellen mit Baurechten der Stadt Thun
Abb. 32: Das Tool "Export to KML" mit der Zeit-Option

TABELLENVERZEICHNIS

Tab. 1: Übersicht der GWR-Daten	. 12
Tab. 2: Tabelle der Gebäude (Auszug)	. 14
Tab. 3: Tabelle der Wohnungen mit der Wohnfläche (Auszug)	. 14
Tab. 4: Metadaten der Ursprungstabelle	.21
Tab. 5: Parameter und Benennung der Ergebnisse	. 22

1. Inhaltliche Ausgangslage und Fragestellung

Energiestrategien von Bund, Kanton und Gemeinde Vor dem Hintergrund der Klimaerwärmung, des Atomunfalls in Fukushima und der Abhängigkeit fossilen Brennstoffen beschreiten der Bund, die Kantone und die Gemeinden den Weg hin zu einer nachhaltigen Energiepolitik. Diese basiert auf den drei Grundpfeilern Verbesserung der Energieeffizienz (Effizienz), Einsatz der Erneuerbaren Energien (Konsistenz) und der bewusste Verzicht auf Energie (Suffizienz). Die Energieversorgung soll dabei sicher, wirtschaftlich und umweltverträglich sein (Art. 89 BV).

> Mit der Energiestrategie 2050 hat der Bundesrat Massnahmen definiert, mit denen die Fernziele der 2000-Watt-Gesellschaft und der 1-t-CO2-Emissionen pro Person und Jahr erreicht werden können.

> Da die Kantone generell für die Energieversorgung verantwortlich sind, haben auch diese Energiestrategien definiert. So soll im Kanton Bern unter anderem der Wärmebedarf um 20% reduziert, der Anteil der Erneuerbaren Energien bei der Wärmeversorgung 70% betragen und der Strom zu 80% erneuerbar bereitgestellt werden. Als Fernziel gilt die 2000-Watt-Gesellschaft.

Die Energiestrategie der Stadt Thun Als Vollzugsbehörde im Gebäudebereich haben die Gemeinden ihrerseits (zum Teil) die Ziele der Kantone übernommen. So auch die Stadt Thun, welche die kantonalen Energieziele (-20% Wärmebedarf, zu 70% erneuerbar) behördenverbindlich im Richtplan Energie verankert hat.

Raumwär- Nach Verwendungszwecken aufgeteilt, entfallen rund 35% des Die Ge- Energiebedarfs auf die Raumwärme (BFE, 2014) in den Gebäuden, me der als 29.5% auf den Verkehr und der Rest auf Prozesswärme und Strom. bäude Energiever-Das Einsparpotenzial bei den Gebäuden durch energetische Sabraucher Nr. 1 nierungen und Ersatzneubauten wird dabei als erheblich eingeschätzt. Die Effizienzgewinne werden allerdings bei den momentanen Sanierungsraten von der steigenden Wohnflächennachfrage durch das Bevölkerungswachstum und den steigenden Wohnflächenanspruch pro Person wieder wettgemacht. Eine Erhöhung der Sanierungsrate ist deshalb das erklärte Ziel von Bund, Kantonen und Gemeinden.

Fragestellung Die Energieziele von Bund, Kantonen und Gemeinden im Gebäudebreich sollen mit Fördermitteln (z.B. Gebäudeprogramm), Lenkungsabgaben (CO2-Abgabe), Information und Kommunikation sowie freiwilligen erhöhten Gebäudestandards (z.B. MINERGIE, Passivhaus) erreicht werden. Eine Sanierungspflicht ist nicht vorgesehen und ist politisch nicht durchsetzbar.

> Für eine Gemeinde könnte es vor dem Hintergrund der knappen Mittel interessant sein, **wo und wann die Energieziele im Gebäudebereich erreicht werden** und wo nicht. Daraus lassen sich gezielt Fördermassnahmen ableiten. Ob und wo die Energieziele erreicht werden, hängt von vielen Parametern ab. Einige davon können

durch Förderung bzw. Lenkung beeinflusst werden. Abgesehen von den exogenen, nicht beeinflussbaren Parametern (geo- und wirtschaftspolitische Lage, Energiepreise, globale Klimapolitik etc.) sind dies u.a. die Sanierungsrate, der Gebäudezustand (bzw. das Baujahr), die Lebensdauer eines Gebäudes (Lebenszyklus) und die Art des Gebäudes (Wohngebäude, Denkmalgeschützt, öffentliche Gebäude).

2. Methodisches Vorgehen in Kürze

- Das Gebäudeparkmodell (GPM) Zur Beantwortung der Frage, wo und wann die Energieziele im Wärmebereich erreicht werden, wird mit Hilfe des GIS ein räumlich und zeitlich differenziertes Gebäudeparkmodell erstellt¹. Ein Gebäudepark umfasst alle Gebäude in einem bestimmten Perimeter. Der Gebäudepark unterliegt gewissen Veränderungen über die Zeit in der Menge (Neubau, Abbruch), Qualität (bauliche Substanz, energetische Qualität) und Nutzung (Schule, Wohnen, Arbeitsstätte). Um diese Veränderungen zu modellieren, wird für jedes Gebäude die Veränderung berechnet. Dies erfolgt anhand der Renovations- und Lebenszyklen.
- ... in Raum Das Modell soll in 2D und in 3D dargestellt werden. Dazu werden die GWR-Daten mit den Geobasisdaten von Swisstopo (SWISSBUIL-DINGS3D) verknüpft.
- ... und Zeit Die Entwicklung des Gebäudeparks wird bis zum Jahr 2035 betrachtet. Dieser Zeithorizont wird in vielen Zieldefinitionen herangezogen (Bsp. Energiestrategie 2035 Kanton Bern). Damit wird das Modell auch 4-Dimensional (4D-Stadtmodell).

3. Eingrenzung

Perimeter Der Untersuchungsperimeter beschränkt sich auf die Stadt Thun (Abb. 1). Dies aufgrund der Datenverfügbarkeit (GWR-Daten, Plausibilisierungsmöglichkeiten anhand des Richtplans Energie). Die Stadt Thun hat rund 44`000 Einwohner. Zur Besonderheit des Gebäudebestandes gehört unter anderem die grosse Anzahl an militärischen Bauten, sowie die mittelalterliche Altstadt.

¹ Ein sog. "Kohortenmodell" weil jede Kohorte (Gruppe) über ein gemeinsames Merkmal verfügt (hier: Bauperiode).

Abb. 1: Untersuchungsperimeter. Die Stadt Thun im Kanton Bern.

- Gebäudeart Im Gebäudeparkmodell (vgl. Kapitel 3) werden nur Wohngebäude betrachtet, die vor 2008 gebaut wurden. Bei Gebäuden mit teilweiser Wohnnutzung wird nur die Fläche berücksichtigt, welche zum Wohnen genutzt wird.
- Energieträger und Verwendungszweck Die Energieträger für die Wärmebereitstellung werden im GPM nicht berücksichtigt. Es geht hier nur um den Wärmebedarf für die Raumwärme, ohne Warmwasser. Ebenso wird der Strombedarf nicht berücksichtigt. Der Warmwasser- und Strombedarf ist Nutzungsbedingt und kann deshalb im GPM nur schlecht abgebildet werden.

Inhaltlicher Anspruch Das Gebäudeparkmodell der Stadt Thun untersucht nur die Veränderung der energetischen Qualität. Die anderen Veränderungen werden hier nicht untersucht.

> Diese Arbeit erhebt keinen Anspruch auf inhaltliche Vollständigkeit. Die Resultate (Zielerreichung, Ziellücken) basieren auf vereinfachten Annahmen und Berechnungen.

4. Ziele der Arbeit

4.1. Methodische Ziele

Nachvollziehbarkeit Das Vorgehen vom Dateninput bis zum Endprodukt soll zu jeder Zeit nachvollziehbar sein. Dazu ist eine saubere Dokumentation aller Schritte und Zwischenschritte nötig.

- Reproduzier-
barkeitDas Produkt für den Perimeter der Stadt Thun soll auch für andere
Perimeter angewendet werden könnten.
- Skalierbarkeit Das Produkt für den Perimeter der Stadt Thun soll mit Hilfe eines Modells (ModelBuilder) auch auf grössere, aggregierte Einheiten (Region, Land) angewendet werden können.
- Lerneffekt Durch neue Anwendungen, welche über die Inhalte des CAS GIS hinausgehen, soll in mit dieser Arbeit ein zusätzlicher Lerneffekt ermöglicht werden. Die neuen Anwendungen wären in diesem Fall die Zeitvisualisierung, Python und das Plug-In "Export to KML".

4.2. Inhaltliche Ziele

- Wärmebedarf Der Wärmeenergiebedarf für die Wohngebäude kann bis 2035 ermittelt werden. Damit lassen sich die Zielerreichung bzw. die Ziellücken aufdecken. Zur Plausibilisierung der Resultate wird der Richtplan Energie der Stadt Thun herangezogen.
- Einflussgebiete Mit Hilfe der räumlichen Darstellung und der Verknüpfung mit Baurechtsabgaben lassen sich Einflussgebiete bezeichnen. Der Weg über die Baurechte rührt daher, dass in der Schweiz kein Sanierungszwang besteht. Die Einflussnahme einer Gemeinde oder Stadt bezüglich energetischer Sanierungen zum Erreichen seiner energiepolitischen Ziele ist deshalb beschränkt. Über die Baurechtsvergabe kann die Eigentümerin jedoch Ansprüche bezüglich Energiestandard geltend machen.

5. Datengrundlagen

- GWR Die Grundlagendaten zu den Gebäuden stammen aus dem Gebäude- und Wohnungsregister (GWR) der Stadt Thun. Die GWR-Daten erhielt ich in Form eines .xls-Files mit einem Blatt der Gebäude und einem Blatt der Wohnungen (vgl. auch Tabelle 1) Insgesamt enthält der Datensatz der Gebäude 7`957 Objekte (nach Eidg. Gebäudeidentifikator EGID), davon 7`457 Wohngebäude (94%). In den 7`457 Wohngebäude gibt es 22`989 Wohnungen mit einem eigenen Identifikator (EWID). Die GWR-Daten sind vom November 2013.
- > Was ist ein
 Aus dem Merkmalskatolog GWR des BFS (2012) ist über die Gebäude zu entnehmen: "Gebäude sind auf Dauer angelegte, mit dem Boden fest verbundene Bauten, die Wohnzwecken oder Zwecken der Arbeit, der Ausbildung, der Kultur oder des Sportes dienen. Bei Doppel-, Gruppen- und Reihenhäusern zählt jedes Gebäude als selbständig, wenn es einen eigenen Zugang von

aussen hat und wenn zwischen den Gebäuden eine senkrechte vom Erdgeschoss bis zum Dach reichende tragende Trennmauer besteht."

- > Gebäudeeingang Das heisst folglich, dass ein Gebäude durch seinen "eigenen Zugang" definiert ist. Also durch den Eingang. Ein Gebäudegrundriss kann demnach mehrere Gebäude haben und somit auch mehrere EGID-Nummern. Dies ist bei der räumlichen Verknüpfung (*spatial join*) zu berücksichtigen (vgl. Kapitel 7). Für die inhaltliche Arbeit ist dieser Sachverhalt nicht weiter störend, da davon ausgegangen werden kann, dass Gebäude(eingänge) mit demselben Grundriss zeitgleich erstellt wurden.
- > Datenschutz Unter der Auflage, die Daten vertraulich und nur im Rahmen des CAS GIS zu verwenden, erhielt ich die Daten zur weiteren Bearbeitung. Der Datenschutz ist hier insbesondere zu beachten, weil aus dem GPM der Wärmebedarf jedes Gebäudes und somit auch jeder Person ermittelt werden könnte.
- Energiekennzahlen (2012) Die spezifischen Wärmeenergiekennzahlen in kWh pro Bauperiode, Quadratmeter und Jahr (kWh/m2*a) stammen aus der Auswertung von GEAKs (Gebäudeenergieausweis der Kantone) aus dem Kanton Bern. Wir diese Kennzahl mit der Wohnfläche multipliziert, erhält man Annäherungswerte für den Wärmeenergiebedarf eines Gebäudes.

Abb. 2: Energiekennzahlen nach Bauperiode

Energiekennzahlen nach Bauperiode

SWISSBUIL-DINGS3D Zur räumlichen Verknüpfung der GWR-Daten wird der Datensatz SWISSBUILDINGS3D von Swisstopo verwendet. Der aus den Gebäudegrundrissen von Vektor25 abgeleitete Datensatz beinhaltet neben der Grundrissfläche auch eine Höhenangabe (abgeleitet aus dem DHM25) der Gebäude. Der Datensatz SWISSBUILDINGS3D ist als Multipatch-Feature Class ab der hsr-Datenbank verfügbar (Datenstand: 2006). SWISSBUILDINGS3D entspricht dem Erfassungsstand der kartenbasierten VECTOR25 Gebäudegrundrisse (1994-2006). Gebäudegrundrisse ab 2007 sind folglich im Datensatz nicht vorhanden (!).

SWISSTLM3D Für die Darstellung in 3D wurde das GPM mit diversen Layern aus dem SWISSTLM3D angereichert (Strassen, Gewässer, Höhenlinien); Datenstand: November 2014

Swissboun-
deries3DDer Perimeter der Stadt Thun stammt aus dem Datensatz Swiss-
boundaries3D von Swisstopo. Datenstand: Januar 2015

Baurechte Stadt Der Geodatensatz der Stadt Thun enthält alle Landabgaben im Thun (2014; vgl. Kapitel 12) Der Geodatensatz der Stadt Thun enthält alle Landabgaben im Baurecht. Die Objekte sind als Polygone in einem Shapefile verfügbar. Jedes Baurecht verfügt über eine eindeutige Baurechtsnummer. Datenstand: November 2014.

Datensatz	GKAT (Code GWR)	n (To- tal)	Missing Values Koordinaten	Missing Values BAUP	Missing Values WAREA
GWR_Thun_GEB	Alle	7`957 (100%)	168 (2%)	313 (4%)	-
Abgeleitet: GWR_Thun_WGEB	Wohngebäude (1010, 1021, 1025, 1030, 1040)	7`457 (94%)	15 ² (0.2%)	0	-
GWR_Thun_WHG	-	22`989 (100%)	-	-	199 (0.8%)

Tab. 1: Übersicht der GWR-Daten.

6. Endprodukte

Karten undDie Endprodukte sind 2D-Karten in verschiedenen Zeitständen.Animationen 2D3D-Animationen sowie eine Tabellarische und eine graphische
(Liniendiagramm) Auswertung.

7. Methodisches Vorgehen: Berechnung des Wärmebedarfs

Berechnung
des Energiebe-
darfs über die"Der Heizwärmebedarf (Qh) ist die auf die Energiebezugsfläche
bezogene Wärmemenge, die pro Jahr erforderlich ist, um ein Ge-
bäude auf einer bestimmten Temperatur zu halten" (SIA380/1:
Thermische Energie im Hochbau, S. 9). Für die Berechnung des

² Die fehlenden 15 Koordinaten habe ich mit der GWR-Daten auf map.geo.admin.ch von Hand vervollständigt.

Heizwärmebedarfs gibt es im Wesentlichen zwei Möglichkeiten: Berechnung anhand effektiver Wärmegewinne (interne Gewinne und solare Gewinne) und Wärmeverluste (Transmission über die Wände, Fenster sowie Lüftngswärmeverlust). Hier wird also für jedes Gebäude eine Bilanz erstellt. Diese Berechnung ist definiert als:

$$Qh = \sum [Qt + Qv - \sigma g (Qi + Qs)]$$

Wobei Qh= Heizwärmebedarf, Qt=Transmissionswärmeverlust, Qv=Lüftungswärmeverlust, σg = Ausnutzungsgrad für Wärmegewinne, Qi=interne Wärmegewinne, Qs=solareWärmegewinne.

Die Summe der Qh's aller Gebäude entspricht dem Wärmeenergiebedarf des gesamten Gebäudeparks. Für diese Art der Berechnung müsste also für jedes Gebäude der Sonnenenergiegewinn (je nach Lage, Gebäudehülle und Fensteranteil) und der Transmissionswärmeverlust (je nach Gebäudehülle, Dämmstärke, Fensteranteil) abgeschätzt werden. Dieser Ansatz ist mit geografischen Informationssystemen (in 3D) möglich, aber aufwändig.³

Berechnung des Energiebedarfs über die Energiekennzahlen Energiekenn-Zeit gebaut wurden. Je Energiekenn-Zeit gebaut wurden. Je Energiekenn-Zeit gebaut wurden. Je Energiekenn-Zeit gebaut wurden Energieken Zeit gebaut wurden Energieken Energ

Der Wärmeenergie für ein Gebäude berechnet sich folglich aus:

Qh = Spez. EKENNZ * EBF

Da die Energiebezugsfläche im GWR als solches nicht erhoben wird, kann diese aus der Wohnfläche (mit einem Korrekturfaktor von 1.3) abgeschätzt werden. Es ergibt sich also:

Qh = Spez. EKENNZ * WFLA * 1.3

Diese Berechnungsart berücksichtigt Verschattungen, Lagehöhe, Fensteranteil und Dämmstärke zwar nicht direkt, in der Summe aller Wohngebäude dürfte diese Abschätzung jedoch für die meisten Fragestellungen genug genau sein.

³ Die Hochschule für Technik Stuttgart (Prof. Dr. Volker Coors) hat dieses Vorgehen bereits angewendet, mit Hilfe eines 3D-Stattmodells (LOD2).

8. Methodisches Vorgehen: der Geoprozess

8.1. Vorbereiten der Datengrundlagen (GWR) und Import in ArcGIS

Vorbereitung in Von der Stadt Thun erhielt ich zwei .xls-Dateien. Zum einen eine Excel: WHG, Tabelle mit den Wohnungen (Primärschlüssel: EWID, Sekundär-GEB und Energiekennzahlen (Primärschlüssel: EGID) und zum anderen eine Tabelle mit den Gebäuden (Primärschlüssel: EGID).

> Ich habe die Tabellen von den unnötigen Angaben entrümpelt und kam so auf zwei schlanke Tabellen mit den wesentlichen Merkmalen für die GIS-Analyse:

Tab. 2: Tabelle der Gebäude (Auszug)

EGID	GKODX	GKODY	GSTAT	GBAUP	GBAUJ	GKAT
1432103	614726	178753	1004	8011	1900	1040
1432104	614714	178761	1004	8013	1953	1030
1432105	614698	178774	1004	8016	1983	1030
1432106	614669	178794	1004	8012	1932	1030
1432107	614653	178803	1004	8011	1919	1030
1432108	614626	178823	1004	8011	1919	1025
1432109	614614	178839	1004	8012	1925	1025

Tab. 3: Tabelle der Wohnungen mit der Wohnfläche (Auszug)

EGID	EWID	WAREA
1432103	2	30
1432103	3	30
1432103	1	100
1432104	1	80
1432105	2	25
1432105	3	25

Energieverbrauch= Wohnfläche* Energiekennzahl* Korrekturfaktor Für die Wohnungen sind ist lediglich die Wohnfläche pro Wohneinheit notwendig. Denn über die Wohnfläche und der spezifischen Energiekennzahl lässt sich der Wärmebedarf eines Gebäudes abschätzen (siehe Kapitel 7). Als dritte Tabelle benötigte ich also die Energiekennzahlen pro Bauperiode (kWh/m2*a), bzw pro Baujahr (aus den Bauperioden abgeleitet).

... und weiter im Es war mir ein Anliegen, nur so wenige Schritte wie möglich im Excel zu machen und nur mit ArcGIS im ModelBuilder zu arbeiten.

Import in ArcGIS Die bereinigten Tabellen *GWR_Thun_WHG, GWR_Thun_GEB und Energiekennzahlen* habe ich in die File-Geodatabase "geodat.gdb" importiert. Nun kann der eigentliche Geoprozess beginnen.

8.2. Zusammenführen der Tabellen

Verknüpfung der Wohnungen mit den Gebäuden (n:1) Damit die Verknüpfung der Wohnungstabelle mit der Gebäudetabelle gelingt, muss zuerst die Beziehung 1:1 hergestellt werden. Dazu werden die Wohnflächen (WAREA) über die EGID-Nummern aggregiert (über *Summary Statistics*). Mit dem Table Join (bzw. *Join Field* im ModelBuilder) werden die zwei Tabellen zusammengefügt.

> Die Energiekennzahlen werden mittels BAUJ als Primärschlüssel ebenfalls mit der Tabelle GWR_Thun_GEB verknüpft. Jeder Gebäudeeingang erhält somit die Summe aller Wohnungsflächen, sowie die spezifische Energiekennzahl pro Baujahr (aus den Bauperioden).

Abb. 3: Schrift 1 im Geoprozess.

8.3. Feldkalkulationen

Ursprüngliche Tabelle: GWR_Thun_WG EB In der Tabelle GWR_Thun_WGEB sind die wichtigsten Merkmale vorhanden, damit nun weitere Felder hinzugefügt und berechnet werde können. Es sind dies: der simulierte Energiebedarf von 2015 bis 2035 (absolut und relativ). Für jedes Jahr gibt es in der Ursprungstabelle ein neues Feld. Somit wird für jedes Gebäude und für jedes Jahr ein Energiebedarf berechnet.

Annahmen Ich ging davon aus, dass die Gebäudehülle alle X Jahre saniert wird. Für jedes Objekt gibt es also in Abhängigkeit seines Baujahres einen individuellen Absenkpfad (Sprungfunktion, vgl. Python-Skript).

> Des Weiteren bin ich davon ausgegangen dass bei einer Erneuerung der Gebäudehülle rund Y% Wärmeenergie eingespart werden kann.

> Die zwei Werte sind die Eingabeparameter (X: RENZYK bzw. Y: EFFGEWINN) ins Modell. Die simulierten Werte bis 2035 können also

in Abhängigkeit dieser zwei Parameter berechnet werden.

Umsetzung in Nachdem ich für jedes Jahr ein Feld hinzugefügt hatte (J_20%%), ArcGIS mit Python Python *in Werkzeug "calculate field*". Dazu benötigte ich eine Bedingungsfunktion. Die als Spalten eingefügten Werte für die Renovationszyklen (RENZYK) und des Effizienzgewinns (EFFGEWINN) können als Parameter (vgl. Modell) angepasst werden. Das Modell kann also für unterschiedliche Parametergrössen berechnet werden.

> Das Ergebnis nach der Berechnung von neuen 20 Feldern ist eine Matrix mit 7457 Objekten und 32 Feldern.

Expression:

verbrj(!GBAUJ!, !EV_BAUJ!, !EFFGEWINN!, !RENZYK!)

Codeblock:

```
def verbrj(GBAUJ, EV_BAUJ, EFFGEWINN, RENZYK):
    if (2024-GBAUJ > (RENZYK * 2)):
        return (EV_BAUJ*EFFGEWINN*EFFGEWINN)
    elif (2024-GBAUJ >=RENZYK and 2024-GBAUJ <=(2 *
    RENZYK)):
        return (EV_BAUJ*EFFGEWINN)
    else:
        return (EV_BAUJ)</pre>
```

Lesehilfe: Wenn das Alter des Gebäude mehr als zwei Renovationszyklen Jahre beträgt, dann ist es 2 mal renoviert worden (return EFFGWINN*EFFGEWINN*Energiebedarf im Baujahr)), ist es jünger als 2 Renovationszyklen aber älter als ein Renovationszyklus, dann ist es einmal renoviert worden (return EFFGEWINN*Energiebedarf im Baujahr). Ist es jünger als 40 Jahre, dann ist es noch nicht renoviert worden (return Energiebedarf im Baujahr).

Weitere neue Felder Als weitere neue Felder habe ich noch die Veränderung zwischen dem Energieverbrauch im Baujahr und 2035 erstellt: einmal absolut (in kWh) und einmal in kWh pro m2 Wohnfläche bzw EBF. Damit lässt sich feststellen, in welchen Gebieten wie viel eingespart wurde.

Abb. 5: Ausschnitt aus dem Prozessmodell: ModellParameter

Abb. 6: Ausschnitt aus dem Prozessmodell: Feldberechnung

8.4. Räumliche Verknüpfung

- Punkt-FC erstel-Ien Die Gebäude sind im GWR-Datensatz mit Hilfe von X- und Y-Koordinaten im LV03 Koordinatensystem verortet. Mit Hilfe des Werkzeugs "*Make XY Event Layer*" wurden die Gebäude georeferenziert und als Punktdatensatz zwischengespeichert.
- Footprints aus Multipatch erstellen um das GPM in 3D darstellen zu können, ist die Höhe der Gebäude nötig. In den Attributen von SWISSBUILDINGS3D ist dieses Attribut vorhanden. Die Gebäude wurden nun auf ihren Gebäudegrundriss (Footprint) reduziert, unter Beibehaltung der Höhe als Attribut.

Abb. 7: Auszug aus dem Prozessmodell: Spatial Join

Das Problem: Unterschiedliche Datenstände

Ein erster Augenschein der Punkt-FC hat schnell gezeigt, dass die unterschiedlichen Datenstände (Vector25 und die GWR-Daten) und ungenaue Verortung dazu führen, dass nicht jedem Gebäudegrundriss ein oder mehrere Punkte zugeordnet werden können (siehe Abb. 8). % der Punkte passen nicht genau auf ein Gebäude (665 von 7457; siehe Abb. 8 und 9). 347 der 7457 Wohngebäude(eingänge) stammen von Gebäuden, die nach 2006 gebaut wurden. Deren Gebäudegrundriss ist folglich nicht im Vector25 vorhanden.

Abb. 8: Punkte neben Gebäudegrundrissen (Gebäude ab 2006)

- Die Lösung Die GWR-Punkte ausserhalb einer bestimmten Distanz (hier: 3m) werden nicht mehr berücksichtigt. Es handelt sich dabei um die Gebäude, welche nach 2006 gebaut wurden. Es fehlen nun also diese Gebäude (347 Stück).
- Spatial Join Die Attribute der Punkte innerhalb und nahe (3m) eines Gebäudegrundrisses nun dem Gebäudegrundriss werden zuaeordnet (spatial siehe Abb. wobei join; 10), der Energieverbrauch aller Gebäudeeingänge und die Wohnflächen eines Gebäudegrundrisses summiert werden.

Abb. 9: Spatial Join. GWR-Daten auf Gebäudegrundrisse

Target Features			
tlm_footprint_thun		-	2
Join Features			_
GWR_Thun_WGEB_Pointlayer		•	2
Output Feature Class			
C: \Users \Alle \Desktop \Abschlussarbeit_GPM_141211 \Geodesign \z_scratch.gdb \tim_footprint	_thun_SpatialJo		6
Join Operation (optional)			
JOIN_ONE_TO_ONE			•
Keep All Target Features (optional)			
Field Map of Join Features (optional)			
IE-V250BJECTID (Long)			+
V250BJECTORIGIN (Text)			
V250BJECTVAL (Text)			Y
U25YEAROFCHANGE (Long)		-	<u> </u>
MINDTM (Double)			
HEIGHT (Double)			T
ia-Z_Min (Double)			_
E-Z_Max (Double)			Ŧ
H-Shape_Length (Double)			-
()- Snape_Area (Double)			
B-CCODY (cond)			
B-GKODX (Long)			
B. CSTAT (Long)			
E-GBAUP (Long)		-	
Match Option (optional)			
WITHIN_A_DISTANCE			•
Search Radius (optional)			
Distance Field Name (optional)	3 Me	ters	-

Zusammenfassung der Tabelle Die Tabelle, mit der weitergearbeitet wird, hat nun 50 Attribute bei 6432 Gebäuden (Matrix 6432 x 50).

NULL-Werte Gibt es einen Gebäudegrundriss, aber keine zugehörigen GWR-Daten, dann ergibt das in der Tabelle NULL-Werte. Die NULL-Werte entstehen dann, wenn der Gebäudegrundriss nicht von einem Wohngebäude stammt. Die NULL-Werte habe ich als solche im Datensatz gelassen.

8.5. Aufbereitung für die zeitliche Visualisierung

- Nötige Tabellenform Die Jahre als Spalten müssen für die zeitliche Visualisierung pro Gebäudegrundriss als Zeilen vorhanden sein. Derselbe Gebäudegrundriss hat also letztlich 20 Zeilen (2015 bis 2035). Hierzu muss ein Teil der Matrix (nämlich die Spalten der Jahre 2015 bis 2035) transponiert werden.
- Tool *Transpose* Mit dem Tool *Transpose* können einzelne Spalten einer Matrix transponiert werden. Das neue Feld habe ich mit VERBRAUCH betitelt. Die Matrix hat nun 135`072 Zeilen und 18 Spalten.

Abb. 10: Ausschnitt aus dem ModelBuilder

Abb. 11: Das Tool Transpose in ArcGIS

tlm_footprint_thun_SpatialJo	I 🖻
ields To Transpose	
Field Name	Value
Join_Count	E
TARGET_FID	
V25OBJECTID	
V250BJECTORIGIN	
V25OBJECTVAL	
V25YEAROFCHANGE	
MINDTM	
HEIGHT	
Check Selected Uncheck Selected Dutput Table C: \Users \Alle \Desktop \Abschlussarbeit_GPM, ransposed Field	_141211\Geodesign\z_scratch.gdb\tlm_footprint_thun_transposed
Check Selected Uncheck Selected Dutput Table C: /Users \Alle \Desktop \Abschlussarbeit_GPM, ransposed Field JAHR	_141211\Geodesign\z_scratch.gdb\tlm_footprint_thun_transposed
Check Selected Uncheck Selected Dutput Table C: \Users\Alle \Desktop \Abschlussarbeit_GPM, ransposed Field JAHR 'alue Field VFBRBALICH	_141211\Geodesign\z_scratch.gdb\tlm_footprint_thun_transposed
Check Selected Uncheck Selected Dutput Table C: /Users\Alle \Desktop \Abschlussarbeit_GPM ransposed Field JAHR /alue Field VERBRAUCH ttribute Fields (optional)	_141211\Geodesign\z_scratch.gdb\tlm_footprint_thun_transposed
Check Selected Uncheck Selected Dutput Table C: /Users\Alle \Desktop \Abschlussarbeit_GPM, ransposed Field JAHR lalue Field VERBRAUCH ttribute Fields (optional) OBJECTID	_141211\Geodesign\z_scratch.gdb\tlm_footprint_thun_transposed
Check Selected Uncheck Selected Dutput Table C: {Users \Alle \Desktop \Abschlussarbeit_GPM, ransposed Field JAHR lalue Field VERBRAUCH ttribute Fields (optional) OBJECTID V Shape	_141211\Geodesign\z_scratch.gdb\tlm_footprint_thun_transposed
Check Selected Uncheck Selected Dutput Table C: \Users\Alle \Desktop \Abschlussarbeit_GPM, ransposed Field JAHR 'alue Field VERBRAUCH ttribute Fields (optional) OBJECTID Shape Join_Count	_141211\Geodesign\z_scratch.gdb\tlm_footprint_thun_transposed
Check Selected Uncheck Selected Dutput Table C: \Users\Alle \Desktop \Abschlussarbeit_GPM, iransposed Field JAHR 'alue Field VERBRAUCH ttribute Fields (optional) OBJECTID Shape Join_Count TARGET_FID	_141211\Geodesign\z_scratch.gdb\thm_footprint_thun_transposed
Check Selected Uncheck Selected Dutput Table C: \Users\Alle \Desktop \Abschlussarbeit_GPM, rransposed Field JAHR 'alue Field VERBRAUCH ttribute Fields (optional) OBJECTID Shape Join_Count TARGET_FID V 250BJECTID	_141211\Geodesign\z_scratch.gdb\thm_footprint_thun_transposed
Check Selected Uncheck Selected Dutput Table C: Users \Alle \Desktop \Abschlussarbeit_GPM, ransposed Field JAHR 'alue Field VERBRAUCH ttribute Fields (optional) OBJECTID V Shape Join_Count TARGET_FID V 250B JECTID V 250B JECTID V 250B JECTID	_141211\Geodesign\z_scratch.gdb\tlm_footprint_thun_transposed
Check Selected Uncheck Selected Dutput Table C: Users \Alle \Desktop \Abschlussarbeit_GPM, ransposed Field JAHR VERBRAUCH ttribute Fields (optional) OBJECTID V Shape V Join_Count TARGET_FID V V250BJECTID V250BJECTORIGIN V250BJECTORIGIN	_141211\Geodesign\z_scratch.gdb\tlm_footprint_thun_transposed
Check Selected Uncheck Selected Dutput Table C: Users \Alle \Desktop \Abschlussarbeit_GPM, ransposed Field JAHR VERBRAUCH ttribute Fields (optional) OBJECTID V Shape V Join_Count TARGET_FID V V2SOBJECTID V 25OBJECTID V 25OBJECTID V 25OBJECTID V 25OBJECTIAL V 25YEAROPCHANGE	_141211\Geodesign\z_scratch.gdb\tlm_footprint_thun_transposed
Check Selected Uncheck Selected Dutput Table C: Users \Alle \Desktop \Abschlussarbeit_GPM, ransposed Field JAHR falue Field VERBRAUCH ttribute Fields (optional) OBJECTID Shape Join_Count TARGET_FID V 250BJECTID V 250BJECTID V 250BJECTID V 250BJECTID V 250BJECTID V 250BJECTIAL V 25YEAROPCHANGE MINDTM	_141211\Geodesign\z_scratch.gdb\tlm_footprint_thun_transposed
Check Selected Uncheck Selected Dutput Table C: Users \Alle \Desktop \Abschlussarbeit_GPM, ransposed Field JAHR alue Field VERBRAUCH ttribute Fields (optional) OBJECTID V Shape Join_Count TARGET_FID V 250BJECTORIGIN V 250BJECTORIGIN V 250BJECTVAL V 250BJECTVAL V 250BJECTVAL V 250BJECTVAL V 250BJECTVAL	_141211\Geodesign\z_scratch.gdb\tfm_footprint_thun_transposed
Check Selected Uncheck Selected Dutput Table C: Users \Alle \Desktop \Abschlussarbeit_GPM, ransposed Field JAHR alue Field VERBRAUCH Attribute Fields (optional) OBJECTID Ø Shape Ø Join_Count TARGET_FID Ø V25OBJECTID V25OBJECTORIGIN V25OBJECTORIGIN V25OBJECTVAL	_141211\Geodesign\z_scratch.gdb\tfm_footprint_thun_transposed

Neues Feld: Verbrauch pro m2 Wohnfläche Werbrauch (Typ Text) in ein Feld des Typs "Double" umwandeln (vgl. Calculate Field (24) in Abb. 10).

Die Tabelle für Die Tabelle aus der Transponierung (FC-Name: das weitere "tlm_footprint_thun_transposed" ALIAS "Relativer Verbrauch" ist Vorgehen nun bereit für die Auswertung in Excel bzw. "R" und Darstellung in ArcGIS, ArcScene und GoogleEarth. Die Tabelle sieht wie folgt aus:

Feldname	Alias	Herkunft	Тур	Ausprägungen
OBJECTID	Gebäude(grundriss)-ID	Neu vergeben	Long	Kontinuierlich
Join_Count	Anzahl gejointer Objekte	"Spatial Join"	Long	Kontinuierlich
MINDTM	Lagehöhe Gebäude in m.ü.M	SWISSBUILDINGS3D	Double	Kontinuierlich
Height	Gebäudehöhe	SWISSBUILDINGS3D	Double	Kontinuierlich
GBAUP	Bauperiode	GWR	Long	Diskret, 12 Ausprägungen
GBAUJ	Bauperiode	GWR	Long	Kontinuierlich
GKAT	Gebäudekategorie	GWR	Long	Diskret, 7 Ausprägungen
SUM_WAREA	Summe der Wohnfläche pro Gebäudegrundriss	GWR	Double	Kontinuierlich
EV_BAUJ	Wärmeenergiebedarf im Baujahr	Berechnet (SUM_WAREA*EKEN NZAHL*1.3)	Double	Kontinuierlich
RENZYK	Renovationszyklus	Eingabeparameter	Long	Diskret, 1 Ausprägung
EFFGEWINN	= 1-Effizienzgewinn	Eingabeparameter	Double	Diskret, 1 Ausprägung
DeltaTo2035	Veränderung Wärmebedarf bis 2035 (EV-BAUJ-	Berechnet	Double	Kontinuierlich
DeltaTo2035_EBF	Veränderung relativer Wärmebedarf (pro m2 Wohnfläche ⁴)	Berechnet	Double	Kontinuierlich
JAHR	Betrachtetes Jahr	Transponiert	Text	Diskret, 20 Klassen
VERBRAUCH	Wärmeenergiebedarf	Berechnet	Text	Kontinuierlich
VERBRAUCH_WA REA	Verbrauch pro m2 Wohnfläche	Berechnet	Double	Kontinuierlich
VERBRAUCH_DO UBLE ⁵	Wärmeenergiebedarf	Berechnet	Double	Kontinuierlich

Tab. 4: Metadaten der Ursprungstabelle

8.6. Aufbereitung und Darstellung der Resultate

8.6.1. Energieverbrauch über den gesamten GP zwischen 2015 und 2035: graphische Darstellung

Energieverbrauch Tabellarisch Für jedes Jahr von 2015 bis 2035 kann nun der berechnete Energieverbrauch für den gesamten Gebäudepark ermittelt werden. Dazu habe ich den Energievebrauch der Gebäude

 $^{^4}$ Hier wurde stellvertretend die Wohnfläche anstatt die Fläche EBF genomme (EBF = 1.3 * Wohnfläche)

⁵ Bei der Transpnierung hat es den Verbrauch als Text-Typ ausgegeben. Diesen musste ich später zu einem Double unmwandeln.

pro Jahr summiert (summary statistics; siehe Abb. 16).

Parameter Dieses Vorgehen habe ich für verschiedene Parameterkombinationen wiederholt und in einem Ordner abgelegt als .jpg-Bild abgelegt (Benennung der Bilder siehe unten). Das Benennen den Export als .xls konnte ich mit dem ModelBuilder automatisieren (vgl. Abb. 15)

Tab. 5: Parameter	EFFGEWINN	0.6	0.7	0.8	0.9
und Benennung	>				
der Ergebnisse.	RENZYK v				
	30	R30_E0.6	R30_E0.7	R30_E0.8	R30_E0.9
	40	R40_E0.6	R40_E0.7	R40_E0.8	R40_E0.9
	60	R60_E0.6	R60_E0.7	R60_E0.8	R60_E0.9
	80	R80_E0.6	R80_E0.7	R80_E0.8	R80_E0.9
		T 1 11			

Darstellung als Die so erhaltenen Tabellen für jede Parameterkombination habe ich in einem Excel-Sheet zusammengefügt und als .csv abgespeichert (siehe Tabelle Resultate im Anhang). Im "R" konnte ich die Ergebnisse nun mühelos darstellen. Das erhaltene R-Skript würde im Fall einer Reproduktion des Modells die Darstellung erleichtern (Skript siehe Anhang 1).

8.6.2. Energieverbrauch zwischen 2015 und 2035: zeitliche Visualisierung in 2D

Ausgangs-FC	Die Ausgangs-FC "tlm_footprint_thun_transposed" mit den 135`072 Zeilen wird zur räumlichen Darstellung verwendet. Damit lassen sich folgende Karten bzw. Filme darstellen:								
	 a) Verbrauch pro Wohnfläche zu jedem Zeitpunkt zwischen 2015 und 2035 (Layername: "Relativer Verbrauch") b) Absoluter Verbrauch zu jedem Zeitpunkt zwischen 2015 und 2035 (Layername: "absoluter Verbrauch") c) Änderung des Verbrauch pro Wohnfläche zwischen dem Baujahr und 2035 (Layername: "DeltaTo2035_EBF") 								
Symbolisierung und Klassenbil- dung a)	Damit die Abstufung fein genug ist und sich Unterschiede über die Zeit darstellen lassen, habe ich 7 Klassen (Natural Breaks) ausge- hend vom VERBRAUCH_WAREA (Verbrauch pro m2 Wohnfläche) gebildet (siehe Abb. 14). 7 Klassen werden ebenfalls beim Ge- bäudeausweis der Kantone (GEAK) verwendet (vgl. www.geak.ch).								
Symbolisierung und Klassenbil- dung b)	Für den absoluten Verbrauch pro Gebäude habe ich wie beim relativen Verbrauch 7 Klassen verwendet. Je dunkler das violett, desto höher ist der absolute Verbrauch eines Gebäudes.								
Symbolisierung und Klassenbil- dung c)	Mit dem Layer "DeltaTo2035_EBF" habe ich ebenfalls 7 Klassen (Natural Breaks) habe ich für die Veränderung des Verbrauchs pro Wohnfläche zwischen dem Baujahr bis 2035 gemacht.								

Darstellung im ModelBuilder Die .lyr-Files der einzelnen FC-Darstellungen habe ich im Layer-Ordner abgelegt. Im ModelBuilder können diese .lyr-Files den Layern zugeordnet werden, womit die Darstellung bei einem Durchlauf im ModelBuilder gewährleistet ist und keiner "Handarbeit" mehr bedarf.

Zeitliche Visualisierung: ein Film Der Layer "tlm_footprint_thun_transposed" kann über die Properties für die zeitliche Visualisierung bereit gemacht werden. Es erscheint danach ein Uhrensymbol mit einem Regler (TimeSlider). Im selben Tool kann der Film bereitgestellt und exportiert werden.

> Die zeitliche Visualisierung (engl. "Time Visualization") kann für jeden Layer, der entsprechend aufbereitet ist, angewendet werden. Hier also für die Entwicklung des relativen Verbrauchs und des absoluten Verbrauchs.

Abb. 14: Ausschnitt aus der Karte (Relativer und absoluter Verbrauch im Jahr 2015, 2020, 2025 und 2035 in 2D)

Zeitliche Visualisierung mit Definition Query in der Kombination aus *Definition Query* in der Ausgangs-FC und der zeitlichen Visualisierung lässt sich zudem der Verlauf einer gewissen Gebäudeklasse anzeigen (als Film oder als Karten(serie): So lässt sich zum Beispiel zeigen, wie die energetisch schlechtesten Gebäude bis 2035 nach und nach verschwinden.

Darstellende Elemente Kartographische Elemente auf den Karten in 2D und 3D sind die Gemeindegrenze (SWISSBOUNDARIES3D), die Bodenbedeckung (SWISSTLM), die Eisenbahnen (SWISSTLM) und die Strassen (SWISSTLM). Diese Layer habe ich jeweils als eigene FC auf den Gemeindeperimeter geclipped und in der geodaten.gdb abgelegt. Auf Beschriftungen habe ich wegen der Lesbarkeit bewusst verzichtet.

> Für starke Kontraste zwischen den Gebäuden und der Basiskarte ist Letztere bewusst sehr dunkel dargestellt.

⁶ Mittels "Dynamic Text" konnte ich im Layout das Datum des Ausschnittes aus der zeitlichen Visualisierung anzeigen.

- 8.6.3. Energieverbrauch zwischen 2015 und 2035: zeitliche Visualisierung in 3D mit ArcScene und mit Google Earth
- Export in Ar-CScene Die FC "tlm_footprint_thun_transposed" mit der Höhenangabe der Gebäude wird im ArcScene geöffnet (via ArcCatalog). Zur besseren Darstellung werden auch noch die Layer aus dem SwissTLM der Eisenbahnen, Strassen, Bodenbedeckung und die Gemeindegrenzen hinzugefügt.
- Extrusion Die Extrusion (vom 2D-Polygon zum Würfel bzw. vom LOD1 zum LOD2 in der OGC-Sprache) erfolgt mittels Properties des Layers "tlm_footprint_thun_transposed" (siehe Abb. 15). Das Attribute "HEIGHTS" aus SWISSBUILDINGS3D dient für die Höhenangabe der Gebäude. Dachformen werden nicht dargestellt, es handelt sich also um den OGC-Standard LOD2 (Level of Detail 2; vgl. Abb. 16).

Lagehöhe Die Lage des Gebäudes über Meer (Lagehöhe) erfolgt über das Attribut "MINDTM". Bei den Properties > Base Heights wird dieses Attribut ausgewählt.

Erstellen einer In ArcScene können zeitliche Animationen aufgezeichnet und als Video exportiert werden. Hierzu ist die Toolbar "Animation" nötig.

Weshalb Google Earth? Die Darstellung in 3D versuchte ich nun auch in Google Earth zu machen. ArcScene ist ein Produkt von ESRI und deshalb nur von ESRI-Lizenznehmern nutzbar. Google Earth Pro ist eine freie Software mit vielen Möglichkeiten, wenn auch nicht ganz so ausgeklügelt wie ArcScene. So lassen sich in Google Earth z.B. nicht alle Attribute abfragen und die Datensätze lassen sich nicht weiter verarbeiten. Auch gibt es bei der Darstellung (Farbwahl, Klassie-

⁷ Quelle: gim-international.com

rung) Einschränkungen. Google Earth Pro ist also in erster Linie für die Darstellung von Geodaten im KML-Format gedacht.

Das Plug-In "Exort to KML" Für den Export von zeitrelevanten Daten ist das ArcGIS-eigene Tool "Layer to KML" ungeeignet. Die Zeitvisualisierung wird nicht unterstützt. Das frei zugängliche Plug-In "Export to KML" kann hier Abhilfe schaffen. Auch kann ein Attribut für die Höhenangabe eines Features angegeben werden. Plug-Ins werden extern heruntergeladen und als .dll-Datei im Sys-

Plug-Ins werden extern neruntergeladen und als .dll-Datei im Systemordner abgelegt. In ArcGIS wird das .dll-File unter Customize > Customize Mode -> Toolbars -> Add File From (Pfad angeben) installiert.

Feature to Point Zur Beschleunigung der Darstellung in Google Earth Pro und zur Senkung der KML-File-Grösse musste die FC "Relativer Verbrauch" zuerst in einen Punktlayer umgewandelt werden (Tool "Feature to point").

"Export to KML" Nun kann der Punktlayer mit dem Plug-In als KML ins Google Earth exportiert und Dargestellt werden.

9. Resultate

9.1. Energieverbrauch über den gesamten GP zwischen 2015 und 2035: graphische Darstellung

Bemerkung

Das Resultat für das Jahr 2035 war unplausibel. Den Fehler konnte ich leider nicht beheben. Das Jahr 2035 ist folglich in der Auswertung nicht vorhanden.

Abb. 18: Einsparungen je nach Parameterwahl (16 Beispiele)

Interpretation

Je kürzer die Renovationsperioden und je höher die Effizienzgewinne bei der Renovierung sind, desto höher sind die Energieeinsparungen insgesamt. Realistisch sind Renovationszyklen zwischen 40 und 80 Jahren und Effizienzgewinne um die 10% bis 20%.

Abb. 20: Modellergebnisse RENZYK=40

Interpretation der Ergebnisse Die Jahre mit den grossen Effizienzgewinnen bzw. mit einem deutlichen Wärmebedarfsrückgang befinden sich je nach gewähltem Renovationszyklus zu einem anderen Zeitpunkt. Die Gewinne fallen ausserdem unterschiedlich hoch aus. Das hat damit zu tun, dass der Energiebedarf der Gebäude aus den 1950er bis zu den 1970er-Jahren pro m2 EBF zum Zeitpunkt des Baus am höchsten ist. Bei einem Renovationszyklus von 80 Jahren beispielsweise werden diese Gebäude zwischen 2030 und 2035 erstmals renoviert. Aufgrund des hohen Anfangswerts im Baujahr fallen die Energieeinsparungen entsprechend hoch ein (prozentualer Anteil, EFFGEWINN). Das konträre Beispiel, der Renovationszyklus von 30 Jahre: Die Gebäude werden nach 2025 das zweite Mal renoviert. Das Einsparpotenzial ist bei der zweiten Renovation tiefer, deshalb ist die Kurve flacher.

9.2. Energieverbrauch zwischen 2015 und 2035: zeitliche Visualisierung in 2D

Karten zu einem ausgewählten Zeitstand

Die folgenden Karten zeigen die Ergebnisse der Modellierung zu einem bestimmten Zeitpunkt (hier: 2025). Für jedes Jahr von 2015 bis 2035 kann eine solche Karte generiert werden.

2 Kilomete

stellung des absoluten Wärmesiehe Anhana 4. Der Massstab stimmt bei dieser Abbildung nicht

(!)

(!)

stopo (2014); GWR, Stadt Thun (2013

9.3. Energieverbrauch zwischen 2015 und 2035: zeitliche Visualisierung in ArcGIS (2D), ArcScene (3D) und Google Earth (3D)

- ArcGIS Die Animation aus dem ArcGIS in 2D ist auf der beigelegten CD verfügbar (.avi).
- ArcScene Die Animation aus dem ArcScene ist auf der beigelegten CD verfügbar (.avi). Folgende Abbildungen sind Ausschnitte aus dem Modell (LOD2).

Abb. 26: 3D- bzw. 4D-Stadtmodell von Thun in LOD2 (Ausschnitt)

Abb. 27: 3D- bzw. 4D-Stadtmodell von Thun in LOD2 (Ausschnitt)

Google Earth Die Animation aus Google Earth hat leider nicht wie gewünscht funktioniert. Das Problem wird bei den Stolpersteinen (Kapitel 12 erörtert. Nichtsdestotrotz sind hier noch zwei Ausschnitte aus dem Endresultat, zuerst als extrudierte Flächendaten (Grundrisse) und dann als Punkte. Ersteres hat sich aufgrund des hohen Rechenaufwandes des Computers für die Darstellung nicht geeignet. Für eine flüssigere Darstellung sind extrudierte Punkte besser, wenn auch nicht ganz so schön anzusehen.

Abb. 28: 3D bzw. 4D-Darstellung in Google Earth

Abb. 29: 3D- bzw. 4D-Darstellung in Google Earth (Punkte) im Jahr 2015

Abb. 30: 3D- bzw. 4D-Darstellung in Google Earth (Punkte) im Jahr 2035

10. Plausibilisierung der Resultate und kritische Würdigung

Vergleich mit Im Rahmen des Überkommunalen Richtplans Energie von Thun hat dem RPE Enegie das Beratungsbüro Ernst-Basler + Partner den Wärmeenergiebedarf (Raumwärme) anhand abgeleiteter und tatsächlicher Verbräuche (Bsp. Gas) ermittelt. Sie kommen damit auf einen momentanen Wert von 296`478 MWh. Dies entspricht ungefähr dem Wert aus diesem GPM mit Renovationszyklen 90 Jahren und Effizienzgewinn von 10% (=265`481 MWh; -10%).

Daraus liesse sich theoretisch schliessen, dass die Parameter mit den Werten 90 und 10% kalibriert werden müssten. Das Problem hierbei ist nur, dass auch die Werte von Ernst-Basler + Partner nicht den realen Werten entspricht. Deshalb ist die Kalibrierung mit diesen Werten problematisch, wenn nicht sogar unzulässig.

Vergleich mit Schweizer Mit Hilfe der Energiestatistik des BFE kann der durchschnittliche Raumwärmeenergiebedarf pro Kopf in der Schweiz ermittelt werden. Dieser lag im 2013 bei 9.62 MWh. In Thun liegt dieser Wert berechnet mit dem vorliegenden Modell – bei 6.63 MWh/Kopf im Jahr 2015. Woher der relativ grosse Unterschied rührt, konnte leider nicht aufgedeckt werden.

Kritische Würdigung aus inhaltlicher Sicht Die Resultate sind im Vergleich zu den oben genannten Werten zu tief ausgefallen. Wobei der reale Raumwärmeenergiebedarf ja gar nicht bekannt ist. Folglich ist auch dieses GPM eine Annäherung an die Realität und kann als solches gewürdigt werden. Verbesserungen liessen sich mit relativ kleinem Aufwand erzielen, in dem man die Gebäude differenzierter in das Modell einbinden würde (Denkmalgeschützte Gebäude, Einfamlienhäuser, Mehrfamilienhäuser, frei stehend, angebaut etc.).

Kritische Würdigung aus methodischtechnischer Sicht Das Geoprozessmodell hat sich im Grossen und Ganzen bewährt. Die Vorgänge wurden grösstenteils automatisiert, so dass eine Skalierung unter Vorbehalt eines kleinen Initialaufwandes möglich wäre. Der Rechendurchlauf einer Parameterkombination dauerte ungefähr 2.5 Minuten, was als durchaus akzeptabel durchgeht.

11. Weitere Auswertungs- und Ausbaumöglichkeiten

Was man noch alles tun könnte schlussarbeit noch nicht konkret behandelt wurden. Sie könnten jedoch weitere interessante Schritte bei der Bearbeitung des Themas "Energieeffizienz in Städten und Gemeinden" sein.

Qh mit der Bilanzierungsmethodik Die ganze Berechnung des Wärmebedarfs Qh liesse sich mit der effektiven Bilanzierung pro Gebäude genauer abschätzen. Dazu müssten in einem 3D-Stadtmodell die Verschattungen, die Lage (Lagehöhe, angebaut oder frei stehend), die Nutzung, der Fensteranteil etc. für jedes Gebäude ermittelt werden. Das ist technisch machbar aber um einiges aufwändiger. Differenzierung der Parameter nach Gebäudeart Much wurde nicht berücksichtigt, dass verschiedene Gebäuschränkungen unterschiedliche Renovationszyklen aufweisen. Auch wurde nicht zwischen Einfamilienhäusern und Mehrfamilienhäusern unterschieden, obwohl hier – empirisch nachgewiesen unterschiedliche Energiekennzahlen bestehen.

Handlungsmöglichkeiten der Stadt Thun via Baurechtsvergabe Die Stadt Thun verfügt über behördenverbindliche Ziele im Bereich der Wärmebedarfsreduktion (-20%). Diese Ziele betreffen neben den Verwaltungsgebäuden auch die privaten Gebäude. Die Einflussnahme auf die privaten Gebäudeeigentümer ist jedoch beschränkt, da keine Sanierungspflicht besteht. Bei der Baurechtserneuerung kann die Stadt jedoch Forderungen bezüglich des Energiestandards stellen. Wohngebäude im Baurecht (insb. Wohnbaugenossenschaften) sind deshalb für eine Sanierungsstrategie besonders geeignet.

> Gebiete, in denen ein grosser Energiebedarf pro EBF besteht und welche in einer Parzelle mit Baurecht liegen (siehe Abb. 31), müssten also ausgeschieden und genauer betrachtet werden.

Abb. 31: Parzellen mit Baurechten der Stadt Thun

Planungsgrundlage für Wärmeverbunde

 Kenntnisse über den momentanen und zukünftigen Wärmebedarf
 von Gebäuden ist bei der Planung von Wärmeverbunden hinsichtlich Effizienz und Rentabilität von zentraler Bedeutung. Das 2D- und 3D-Stadtmodell bietet dazu eine gute Grundlage. So könnten Wärmebedarfsdichten in 4D abgebildet werden.

Ableitung und Unter den strategischen energiepolitischen Zielen befindet sich auch die Reduktion der CO2-Emissionen (hier verallgemeinert THG-

THG-Emissionen Emissionen). Mit Hilfe des Energieträgers (Merkmal im GWR vorhanden) und den THG-Faktoren (vgl. ESU Services: Primärenergiefaktoren von Energiesystemen), liessen sich die THG-Emissionen räumlich darstellen.

12. Stolpersteine

"Export to KML" Plug-In und Google Earth Zeitvisualisierung

Neben den Installationsschwierigkeiten hat auch die zeitliche Visualisierung leider nicht wie gewünscht funktioniert. Beim Zeitregler lassen sich nur das Anfangsjahr (2015) und das Endjahr (2035) darstellen. Die Jahre dazwischen werden nicht angezeigt. Das Problem konnte ich bis zum Schluss nicht lösen.

Abb. 32: Das Tool	Export to KML (OPTIONS)	Export to KML (OPTIONS)							
"Export to KML"	Export Options	Labeling and Description Options							
mit der Zeit-	Database Schema Options	About "Export to KML"							
Option	3D Options	Time Options							
	The options below allow you to add tim specifying a "start time" and "end time" users of your KML will be able to exploi time using the "time slider" in Google Ea Select an attribute that represents the	The options below allow you to add time information to the output KML. By specifying a "start time" and "end time" attribute for each output feature, users of your KML will be able to explore and animate your content through time using the "time slider" in Google Earth. Select an attribute that represents the "start time" of each feature:							
	JAHR	•							
	Select an attribute that represents the	"end time" of each feature:							
	JAHR	▼							
	Format all dates and times to the G	oogle Earth XML standard							

- Graphentool ArcMap Es war die Absicht, auch die Darstellung der Graphen im ArcMap zu automatisieren. Dazu würden sich sog. Templates erstellen und auf eine beliebige Tabelle anwenden lassen. Aufgrund der Darstellungsmöglichkeiten, was Schriftart, Legende, Farben etc. betrifft, hat sich das Graphentool von ArcMap nicht bewährt. Der Export und die Bearbeitung in "R" empfand ich als angenehmer und flexibler. "R"-Kenntnisse sind dazu aber eine Voraussetzung.
- Python Die Syntax von Python war mir vor dieser Arbeit nicht bekannt, es war ja auch ein Ziel der Arbeit, Python zu lernen. Die ersten Versuche haben jeweils einzig und allein Fehlermeldungen hervorgebracht. Allerdings lassen sich diese überlisten, wenn man einige Grundregeln von Python anwendet, so ist der konsistent angewendete Leerzeichenabstand vor den Zeilen eine wichtige Grundregel.

13. Persönliches Fazit

Zeitintensiv aber spassig! Im Sinne einer persönlichen Schlussfolgerung zum gesamten Projekt von der Ursprungsidee bis zu den Resultaten lässt sich sagen, dass die Bearbeitung – ausser bei technischen Schwierigkeiten viel Spass gemacht hat. Es ist spannend zu sehen, was alles aus einzig und alleine zwei Datensätzen (GWR und SWISSBUIL-DINGS3D) herausgeholt werden kann. Der Zeitaufwand war relativ hoch, was allerdings auch mit meinen persönlichen Ansprüchen an die Arbeit verbunden ist.

Die Projektarbeit wird auch in meiner beruflichen Entwicklung hilfreich sein.

Ziele (teilweise) erreicht Die persönlichen Ziele (siehe Kapitel 4) habe ich auf der methodischen Seit alle erreicht: Das Modell ist – so hoffe ich - nachvollziehbar und mit Hilfe des ModelBuilders auch reproduzier- und skalierbar. Die Lerneffekte, die ich mir zu Beginn der Arbeit erhofft hatte, sind allesamt eingetreten – und sind sogar noch übertroffen worden.

Auf der inhaltlichen Seite konnte ich ein gestecktes Ziel nicht vollumfänglich bearbeiten, nämlich die Darlegung der Handlungsoptionen der Stadt Thun im Rahmen der Baurechtsvergabe.

Anhang 1: R-Skript

Plot Energiekennzahlen:

```
>par(bg='white')
>plot(Energiekennzahlen$Bauperiode,Energiekennzahlen$Energieke
nnzahl,type="h",ylim=c(0,250),ylab="kWh/m2*a",col="red",
cex.axis=0.75, las=2)
>title(main="Energiekennzahlen nach Bauperiode")
>grid(NULL, NULL, col = "gray", lty = "dotted", lwd =
par("lwd"), equilogs = TRUE)
```

Plot Resultate (aus .csv-Datei aus dem ArcGIS ModelBuilder)

```
>par(bg='white')
```

```
>plot(Resultate$JAHR, Resultate$R60E09, type="1", ylim=c(0, 300000), ylab="MWh", xlab="", col=30)
```

>title(main="Modellierter Absenkpfad R=60")

>lines(Resultate\$JAHR, Resultate\$R30E06, type="1", col="blue")

>lines(Resultate\$JAHR, Resultate\$R30E07, type="1", col="red")

>lines(Resultate\$JAHR, Resultate\$R30E08, type="1", col="black")

```
>grid(NULL, NULL, col = "gray", lty = "dotted", lwd =
par("lwd"), equilogs = TRUE)
```

```
>legend(2015,100000,c("EFF 0.9","EFF 0.8","Eff 0.7","Eff 0.6"),lty=c(1,1,1),col=c("30","black","red","blue"),cex=0.5)
```

Barplot Resultate

>barplot(Ersparnisse_Resultate2\$ERSPARNISSE,names.arg=Ersparnis se_Resultate2\$JAHR,las=3,col=c("peru","darkgrey","orange","red 2"),ylim=c(0,0.2),main="Einsparnisse Wärmebedarf GPM Thun: Modellergebnisse")

Anhang 2: Tabelle Resultate

Ergebnisse in MWh (1000 KWh = 1 MWh = 0.001 GWh)

JAHR	R30E06	R30E07	R30E08	R30E09	R40E06	R40E07	R40E08	R40E09	R60E06	R60E07	R60E08	R60E09	R80E06	R80E07	R80E08	R80E09
2015	146882	174361	204541	237419	167484	191637	217274	244394	218353	231994	245648	259315	242966	250467	257972	265481
2016	146437	173991	204268	237270	167161	191372	217081	244290	217745	231537	245344	259163	242815	250354	257897	265444
2017	145777	173450	203878	237059	166906	191169	216939	244214	217369	231251	245149	259064	242706	250272	257842	265416
2018	141111	169926	201510	235868	166370	190759	216659	244072	217088	231039	245006	258991	242593	250186	257785	265389
2019	140729	169619	201293	235752	165992	190467	216459	243968	216614	230682	244768	258873	242269	249943	257622	265307
2020	140416	169348	201089	235638	165684	190211	216272	243867	216098	230295	244511	258744	242107	249822	257542	265266
2021	139868	168899	200764	235463	165149	189799	215990	243721	214241	228703	243316	258080	241873	249644	257421	265205
2022	139383	168516	200495	235322	164831	189544	215809	243627	213286	227982	242832	257837	241692	249509	257331	265161
2023	135234	165335	198329	234216	161043	186689	213897	242666	212746	227574	242559	257699	241197	249137	257084	265036
2024	134861	165016	198090	234083	160432	186194	213542	242476	212622	227481	242496	257668	240728	248785	256849	264919
2025	134748	164923	198023	234047	159957	185803	213257	242321	199468	217612	235915	254376	240445	248573	256707	264849
2026	126828	157998	192750	231082	159641	185544	213071	242221	198754	217070	235550	254192	239779	248074	256374	264683
2027	126204	157481	192371	230876	158947	184974	212658	241998	197965	216470	235143	253985	239404	247792	256186	264588
2028	123127	155119	190761	230053	154261	181431	210278	240799	197393	216031	234844	253833	239110	247571	256039	264514
2029	122519	154625	190407	229863	153860	181110	210048	240677	197037	215764	234666	253743	238350	247001	255659	264324
2030	122233	154384	190229	229766	153377	180690	209730	240499	196654	215465	234459	253635	237896	246661	255432	264211
2031	122057	154231	190112	229701	152866	180272	209429	240338	196000	214969	234125	253466	237273	246193	255119	264053
2032	121654	153882	189849	229554	152170	179704	209021	240118	195598	214665	233921	253364	236909	245920	254938	263962
2033	120106	152693	189037	229138	148352	176813	207074	239135	195038	214228	233619	253208	219535	232889	246250	259619
2034	119555	152247	188718	228968	137866	167645	200095	235210	194591	213890	233392	253093	218919	232426	245942	259464

Anhang 3: Karten in A3, Anhang 4: Das Prozessmodell in A3